Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series)

Pulm Circ. 2015 Mar;5(1):63-72. doi: 10.1086/679700.

Abstract

Reversible lysine acetylation has emerged as a critical mechanism for controlling the function of nucleosomal histones as well as diverse nonhistone proteins. Acetyl groups are conjugated to lysine residues in proteins by histone acetyltransferases and removed by histone deacetylases (HDACs), which are also commonly referred to as lysine deacetylases. Over the past decade, many studies have shown that HDACs play crucial roles in the control of left ventricular (LV) cardiac remodeling in response to stress. Small molecule HDAC inhibitors block pathological hypertrophy and fibrosis and improve cardiac function in various preclinical models of LV failure. Only recently have HDACs been studied in the context of right ventricular (RV) failure, which commonly occurs in patients who experience pulmonary hypertension (PH). Here, we review recent findings with HDAC inhibitors in models of PH and RV remodeling, propose next steps for this newly uncovered area of research, and highlight potential for isoform-selective HDAC inhibitors for the treatment of PH and RV failure.

Keywords: epigenetics; histone deacetylases; pulmonary hypertension; right ventricle.

Publication types

  • Review