We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental band gap and the band velocity. In a magnetic field, this model implies a unique property-spin splitting equal to twice the cyclotron energy: Es=2Ec. This explains the extensive magnetotransport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es=2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es=Ec always holds.