Physiological integration between connected ramets can increase the performance of clonal plants when ramets experience contrasting levels of resource availabilities in heterogeneous environments. It has generally been shown or assumed that clonal integration has little effect on clonal performance in homogeneous environments. However, a conceptual model suggests that integration could increase performance in a homogeneous environment when connected ramets differ in uptake ability and external resource supply is high. We tested this hypothesis in a greenhouse experiment with the amphibious plant Alternanthera philoxeroides. Ramets in clonal fragments containing three rooted and two unrooted ramets were either left connected or divided into a basal part with two rooted ramets and an apical part with the other ramets. To simulate realistic, homogeneous environments of the species with different levels of resource supply, plants were grown at 0, 20, or 40 cm of water depth. Water depth had a positive effect on most measures of growth, indicating that resource supply increased with depth. Connection had negative to neutral effects on total growth of fragments at a water depth of 0 cm, and neutral to positive effects at 20- and 40-cm depths; effects on the apical part were generally positive and larger at greater depth; effects on the basal part were generally negative and smaller at greater depth. Results largely supported the hypothesis and further suggest that clonal integration of allocation and reproduction may modify benefits of resource sharing in homogeneous environments.
Keywords: Allocation; Clonal plant; Developmental stage; Physiological integration; Water depth.