Complementary phenol-enriched olive oil improves HDL characteristics in hypercholesterolemic subjects. A randomized, double-blind, crossover, controlled trial. The VOHF study

Mol Nutr Food Res. 2015 Sep;59(9):1758-70. doi: 10.1002/mnfr.201500030. Epub 2015 Jun 30.

Abstract

Scope: Consumption of olive oil (OO) phenolic compounds (PCs) has beneficial effects on lipid profile. HDL functionality is currently considered to be a more important issue than its circulating quantity. Our aim was to assess whether functional virgin olive oils (FVOOs), one enriched with its own PC (500 ppm; FVOO) and another with OOPC (250 ppm) plus additional complementary PCs from thyme (250 ppm) (total: 500 ppm; FVOOT (functional virgin olive oil with thyme)), could improve HDL functionality related properties versus a virgin OO control (80 ppm; VOO).

Methods and results: In a randomized, double-blind, crossover, controlled trial, 33 hypercholesterolemic volunteers received 25 mL/day of VOO, FVOO, and FVOOT during 3 wk. HDL cholesterol increased 5.74% (p < 0.05) versus its baseline after the FVOOT consumption in the participants without hypolipidemic medication. We detected, after FVOOT consumption, an increase in HDL2 -subclass (34.45, SD = 6.38) versus VOO intake (32.73, SD = 6.71). An increment in esterified cholesterol/free cholesterol and phospholipids/free cholesterol in HDL was observed after FVOOT consumption (1.73, SD = 0.56; 5.44, SD = 1.39) compared with VOO intervention (1.53, SD = 0.35; 4.97, SD = 0.81) and FVOO intervention (1.50, SD = 0.33; 4.97, SD = 0.81). Accordingly, lecithin-cholesterol acyltransferase mass increased after FVOOT consumption (1228 μg/mL, SD = 130), compared with VOO consumption (1160 μg/mL, SD = 144). An improvement in HDL oxidative-status was reflected after FVOOT consumption versus its baseline, given an increment in the paraoxonase activity (118 × 10(3) U/L, SD = 24).

Conclusion: FVOOT improves HDL-subclass distribution and composition, and metabolism/antioxidant enzyme activities. FVOOT could be a useful dietary tool in the management of high cardiovascular risk patients.

Keywords: Functional virgin olive oil; HDL composition; HDL subclass; Lecithin-cholesterol acyltransferase (LCAT); Paraoxonase/arylesterase (PON).

Publication types

  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Biomarkers / blood
  • Blood Pressure / drug effects
  • Body Mass Index
  • Cholesterol, HDL / blood*
  • Cholesterol, LDL / blood
  • Cross-Over Studies
  • Dose-Response Relationship, Drug
  • Double-Blind Method
  • Energy Intake
  • Female
  • Genotyping Techniques
  • Humans
  • Hypercholesterolemia / drug therapy*
  • Male
  • Middle Aged
  • Motor Activity
  • Olive Oil / administration & dosage*
  • Olive Oil / analysis
  • Patient Compliance
  • Phenols / analysis*
  • Risk Factors
  • Triglycerides / blood

Substances

  • Biomarkers
  • Cholesterol, HDL
  • Cholesterol, LDL
  • Olive Oil
  • Phenols
  • Triglycerides