The process of producing tomato paste by ohmic heating method

J Food Sci Technol. 2015 Jun;52(6):3598-606. doi: 10.1007/s13197-014-1424-5. Epub 2014 Jun 4.

Abstract

In this study, the effect of ohmic heating technique on electrical conductivity, water evaporation rate, heating rate, colour parameters, pH and energy consumption of tomato samples was investigated. Ohmic heating was accomplished till the moisture content of the tomato samples reduced from initial moisture content of as 9.33 (dry basis) to a safer level of 2.2. The results of the nonlinear mathematical model including the effects of voltage gradient level and the temperature on the electrical conductivity changes had good agreement (R ≥ 0.955) with the experimental data. Also, it was observed that the electrical conductivity increased along with concentration of tomato samples. The range of electrical conductivity during ohmic heating was 3.19-8.95 (S/m). It was found that processing time decreased from 28.32 to 4.3 min over the voltage gradient range studied (6 to 14 V/cm), which resulted in decreased specific energy consumption from 4.63 to 3.05 (MJ/kg water). Due to increasing of heating rate and water evaporation rate at high voltage gradient, the change of the pH was limited. Samples processed in high voltage gradient had higher L*, b* and hue angle (h), lower a* and Chroma (C) values as compared to low voltage gradient. The optimum value of processing time, pH, colour, specific energy consumption was obtained at 14 V/cm voltage gradient level.

Keywords: Colour; Electrical conductivity; Energy consumption; Ohmic heating; Tomato; Voltage gradient.