Purpose: This study was designed to investigate if the potential haemostatic efficacy of gauze-impregnated clinoptilolite created with nano-technology is as strong as the widely used kaolin to control pulsatile arterial bleeding due to major vascular injury.
Methods: 42 rats were separated into three groups of kaolin, clinoptilolite and control groups. The femoral artery was isolated and active arterial haemorrhage was performed. After 30 s of free arterial haemorrhage, compression was applied with a standard 100 g scale and haemostasis was assessed at the 1st, 3rd and 5th minutes. All groups were observed throughout 60 min for survival without any fluid resuscitation and the mean arterial pressure, pulse, body/surface temperature and arterial blood gas values were measured.
Results: In the control group, haemostasis did not develop in any of the 12 rats and the survival rate was 5/12 (41.66 %). In the kaolin group, haemostasis developed in seven rats and of these, bleeding reoccurred in four. The survival rate was 10/13 (76.92 %). In the clinoptilolite group, haemostasis developed in eight rats and bleeding recurred in only one. The survival rate was 100 %. In terms of survival, the clinoptilolite and kaolin groups showed superiority to the control group (p = 0.002, p = 0.082). In the evaluation of recurrent haemorrhaging in the rats with haemostasis, clinoptilolite was observed to provide better coagulation than kaolin.
Conclusion: A statistically significant difference was determined in clinoptilolite and kaolin group, when they are separately compared with the control group in respect of the effect on MAP, HCO3 (-), lactate, base excess, haemostasis duration and survival rates. The effect of clinoptilolite on haemostasis and survival time was observed to be at least as good as that of kaolin; therefore, clinoptilolite can be used as an active ingredient in a topical haemostat.
Keywords: Clinoptilolite; Haemorrhage; Kaolin; Nano-particle; Rat; Topical haemostat.