Introduction: Electronic cigarettes (E-Cigs) are popular alternatives to conventional tobacco cigarettes. Disposable E-Cigs are single-use devices that emit aerosols from a nicotine-containing solution (e-liquid) by activating a heating coil during puffing. However, due to lack of regulations and standards, it is unclear how product claims are aligning with actual content and performance. Some analytical methods for characterizing E-Cigs are still in an exploratory phase.
Methods: Five products of disposable E-Cigs (purchased March-April, 2014 from a local smoke shop and an on-line US distributor) were studied for nicotine content, number of puffs obtained before depletion, portion of nicotine delivered via aerosolization, and e-liquid pH. Protocols were developed to consistently extract e-liquid from puffed and unpuffed E-Cigs. An in-house mechanical puffing machine was used to consistently puff E-Cig aerosols onto filter pads. A gas chromatography-mass spectrometry method was developed that produced sensitive and repeatable nicotine determinations.
Results: Under our experimental parameters, results showed a disparity between nicotine content and number of puffs achieved relative to what was claimed on product packaging. The portion of nicotine delivered to filter pads was often less than half that which was available, indicating much of the nicotine may be left in the E-Cig upon depletion.
Conclusions: Analyses of unpuffed E-Cigs by gas chromatography-mass spectrometry indicate the nicotine content of these products can be considerably different from manufacture's labeling. Furthermore, a large portion of the nicotine in E-Cigs may not be transferred to the user, and that which is transferred, may often be in the less bioavailable form.
© The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: [email protected].