Competition for light has traditionally been considered as the main mechanism for exclusion of Pinus massoniana during succession in subtropical forest ecosystems. However, both long-term inventories and a seedling cultivation experiment showed that growth of mature individuals and young seedlings of P. massoniana was not limited by available light, but was strongly influenced by stoichiometric homoeostasis. This is supported by the results of homoeostatic regulation coefficients for nitrogen (HN) and phosphorus (HP) estimated using the measured data from six transitional forests across subtropical China. Among three dominant tree species in subtropical forests, P. massoniana and Castanopsis chinensis had the lowest values of HP and HN, respectively. Therefore P. massoniana cannot survive in the advanced stage due to soil phosphorus limitation and C. chinensis cannot successfully grow in the pioneer stage due to soil nitrogen limitation. Our results support that stoichiometric homeostasis is the main reason for gradual exclusion of P. massoniana from the transitional forest and the eventual elimination from the advanced forest during the subtropical forest succession. Therefore greater attention should be paid to stoichiometric homeostasis as one of the key mechanisms for species exclusion during forest succession.