Carbon nanotubes (CNT) have been eagerly studied because of their multiple applications in product development and potential risks on health. We investigated the difference of two different CNT and asbestos in inducing proinflammatory reactions in C57BL/6 mice after single pharyngeal aspiration exposure. We used long tangled and long rod-like CNT, as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse. The mice were sacrificed 4 and 16 h or 7, 14, and 28 days after the exposure. To find out the importance of a major inflammatory marker IL-1β in CNT-induced pulmonary inflammation, we used etanercept and anakinra as antagonists as well as Interleukin 1 (IL-1) receptor (IL-1R-/-) mice. The results showed that rod-like CNT, and asbestos in lesser extent, induced strong pulmonary neutrophilia accompanied by the proinflammatory cytokines and chemokines 16 h after the exposure. Seven days after the exposure, neutrophilia had essentially disappeared but strong pulmonary eosinophilia peaked in rod-like CNT and asbestos-exposed groups. After 28 days, pulmonary granulomas, goblet cell hyperplasia, and Charcot-Leyden-like crystals containing acidophilic macrophages were observed especially in rod-like CNT-exposed mice. IL-1R-/- mice and antagonists-treated mice exhibited a significant decrease in neutrophilia and messenger ribonucleic acid (mRNA) levels of proinflammatory cytokines at 16 h. However, rod-like CNT-induced Th2-type inflammation evidenced by the expression of IL-13 and mucus production was unaffected in IL-1R-/- mice at 28 days. This study provides knowledge about the pulmonary effects induced by a single exposure to the CNT and contributes to hazard assessment of carbon nanomaterials on airway exposure.
Keywords: Charcot-Leyden-like crystals; IL-1β; Th2; asbestos; multiwalled carbon nanotubes.
© The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: [email protected].