An elevation in levels of circulating microparticles (MPs) due to high air pressure exposure and the associated inflammatory changes and vascular injury that occur with it may be due to oxidative stress. We hypothesized that these responses arise due to elevated partial pressures of N2 and not because of high-pressure O2. A comparison was made among high-pressure air, normoxic high-pressure N2, and high-pressure O2 in causing an elevation in circulating annexin V-positive MPs, neutrophil activation, and vascular injury by assessing the leakage of high-molecular-weight dextran in a murine model. After mice were exposed for 2 h to 790 kPa air, there were over 3-fold elevations in total circulating MPs as well as subgroups bearing Ly6G, CD41, Ter119, CD31, and CD142 surface proteins-evidence of neutrophil activation; platelet-neutrophil interaction; and vascular injury to brain, omentum, psoas, and skeletal muscles. Similar changes were found in mice exposed to high-pressure N2 using a gas mixture so that O2 partial pressure was the same as that of ambient air, whereas none of these changes occurred after exposures to 166 kPa O2, the same partial pressure that occurs during high-pressure air exposures. We conclude that N2 plays a central role in intra- and perivascular changes associated with exposure to high air pressure and that these responses appear to be a novel form of oxidative stress.
Keywords: decompression; microparticles; neutrophil activation; oxidative stress; singlet oxygen.
Copyright © 2015 the American Physiological Society.