Dynamics of water, methanol, and ethanol in a room temperature ionic liquid

J Chem Phys. 2015 Jun 7;142(21):212408. doi: 10.1063/1.4914156.

Abstract

The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl (O-D) stretching mode of each of the solutes. The long timescale spectral diffusion observed by 2D IR, capturing complete loss of vibrational frequency correlation through structural fluctuation of the medium, shows a clear but not dramatic slowing as the probe alkyl chain length is increased: 23 ps for water, 28 ps for methanol, and 34 ps for ethanol. Although in each case, only a single population of hydroxyl oscillators contributes to the infrared line shapes, the isotropic pump-probe decays (normally caused by population relaxation) are markedly nonexponential at short times. The early time features correspond to the timescales of the fast spectral diffusion measured with 2D IR. These fast isotropic pump-probe decays are produced by unequal pumping of the OD absorption band to a nonequilibrium frequency dependent population distribution caused by significant non-Condon effects. Orientational correlation functions for these three systems, obtained from pump-probe anisotropy decays, display several periods of restricted angular motion (wobbling-in-a-cone) followed by complete orientational randomization. The cone half-angles, which characterize the angular potential, become larger as the experimental frequency moves to the blue. These results indicate weakening of the angular potential with decreasing hydrogen bond strength. The slowest components of the orientational anisotropy decays are frequency-independent and correspond to the complete orientational randomization of the solute molecule. These components slow appreciably with increasing chain length: 25 ps for water, 42 ps for methanol, and 88 ps for ethanol. The shape and volume of the probe, therefore, impact reorientation far more severely than they do spectral diffusion at long times, though these two processes occur on similar timescales at earlier times.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ethanol / chemistry*
  • Hydrogen Bonding
  • Ionic Liquids / chemistry*
  • Methanol / chemistry*
  • Spectrophotometry, Infrared
  • Temperature*
  • Thermodynamics*
  • Water / chemistry*

Substances

  • Ionic Liquids
  • Water
  • Ethanol
  • Methanol