Structure, Crystallographic Sites, and Tunable Luminescence Properties of Eu(2+) and Ce(3+)/Li(+)-Activated Ca1.65Sr0.35SiO4 Phosphors

Inorg Chem. 2015 Aug 17;54(16):7684-91. doi: 10.1021/acs.inorgchem.5b00455. Epub 2015 Jun 11.

Abstract

Eu(2+) and Ce(3+)/Li(+) singly doped and Eu(2+)/Ce(3+)/Li(+)-codoped Ca1.65Sr0.35SiO4 phosphors have been synthesized by a solid-state reaction method. The crystal structure was determined by Rietveld refinement to verify the formation of the αL′-Ca2SiO4 phase with the Sr addition into Ca2SiO4, and the preferred crystallographic positions of the Eu(2+) and Ce(3+)/Li(+) ions in Ca1.65Sr0.35SiO4 were analyzed based on a comparison of the unit-cell volumes and the designed chemical compositions of undoped isostructural compounds Ca(2–x)Sr(x)SiO4 (x = 0.25, 0.35, 0.45, 0.55 and 0.65). Ce(3+)/Li(+) singly activated Ca1.65Sr0.35SiO4 phosphors exhibit strong absorption in the range of 250–450 nm and a blue emission peak centered at about 465 nm. When Eu(2+) ions are codoped, the emission colors of Ca1.65Sr0.35SiO4:Ce(3+)/Li(+),Eu(2+) phosphors under the irradiation of 365 nm can be finely tuned from blue to green through the energy transfer from Ce(3+) to Eu(2+). The involved energy-transfer process between Ce(3+) and Eu(2+) and the corresponding mechanism are discussed in detail. The reported Ca1.65Sr0.35SiO4:Ce(3+)/Li(+),Eu(2+) phosphor might be a candidate for color-tunable blue-green components in the fabrication of near-ultraviolet-pumped white-light-emitting diodes (WLEDs).