The distribution, bioavailability, and accumulation of antimony (Sb) at the interface of rhizospheric soils and indigenous plants from a large Sb mining/smelting area in Southwest China were explored. Results showed that the local soil was severely polluted by Sb, and the aluminum magnesium silicate minerals and the carbonate fraction may mainly contribute to bound Sb. The sequential extraction results of soil samples revealed that the portion of bioavailable Sb was low, but the bioavailable Sb concentration was up to 67.2 mg/kg, due to high total Sb concentrations in the soil. The Sb content in local plants showed a wide range, from 21 to 21148 mg/kg. The species of Chenopodium album Linn., Sedum emarginatum Migo, and Sedum lineare Thunb showed high accumulation of Sb at levels of above 1000 mg/kg. The Sb contents in the tissues for most plants decreased with the order of root > leaf > stem. The bioaccumulation coefficients and/or the biological transfer factors for most plants were less than 1. All of the studied plant species were not identified as Sb-hyperaccumulators, but the species of Chenopodium album Linn., Sedum emarginatum Migo, and Sedum lineare Thunb could be applied as alternative plants for phytoremediating Sb-polluted soils.
Keywords: antimony; mine area; phytoremediation; plant; soil.