Sweetpotato (Ipomoea batatas L.) is an outcrossing hexaploid species with a large number of chromosomes (2n = 6x = 90). Although sweetpotato is one of the world's most important crops, genetic analysis of the species has been hindered by its genetic complexity combined with the lack of a whole genome sequence. In the present study, we constructed a genetic linkage map based on retrotransposon insertion polymorphisms using a mapping population derived from a cross between 'Purple Sweet Lord' (PSL) and '90IDN-47' cultivars. High-throughput sequencing and subsequent data analyses identified many Rtsp-1 retrotransposon insertion sites, and their allele dosages (simplex, duplex, triplex, or double-simplex) were determined based on segregation ratios in the mapping population. Using a pseudo-testcross strategy, 43 and 47 linkage groups were generated for PSL and 90IDN-47, respectively. Interestingly, most of these insertions (~90%) were present in a simplex manner, indicating their utility for linkage map construction in polyploid species. Additionally, our approach led to savings of time and labor for genotyping. Although the number of markers herein was insufficient for map-based cloning, our trial analysis exhibited the utility of retrotransposon-based markers for linkage map construction in sweetpotato.
Keywords: high-throughput sequencing; linkage map; polyploidy; pseudo-testcross; retrotransposon; sweetpotato.