Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector

Opt Express. 2015 Jun 1;23(11):14603-11. doi: 10.1364/OE.23.014603.

Abstract

We demonstrated a laser depth imaging system based on the time-correlated single-photon counting technique, which was incorporated with a low-jitter superconducting nanowire single-photon detector (SNSPD), operated at the wavelength of 1550 nm. A sub-picosecond time-bin width was chosen for photon counting, resulting in a discrete noise of less than one/two counts for each time bin under indoor/outdoor daylight conditions, with a collection time of 50 ms. Because of the low-jitter SNSPD, the target signal histogram was significantly distinguishable, even for a fairly low retro-reflected photon flux. The depth information was determined directly by the highest bin counts, instead of using any data fitting combined with complex algorithms. Millimeter resolution depth imaging of a low-signature object was obtained, and more accurate data than that produced by the traditional Gaussian fitting method was generated. Combined with the intensity of the return photons, three-dimensional reconstruction overlaid with reflectivity data was realized.