The difference in reactivity of the hexaoxygenated natural product thapsigargin (1) and the pentaoxygenated nortrilobolide (3) was compared in order to develop a chemo- and regioselective method for the conversion of nortrilobolide (3) into the natural product 2-acetoxytrilobolide (4). For the first time, a stereoselective synthesis of 2-acetoxytrilobolide (4) is described, which involves two key reactions: the first chemical step was a one-pot substitution-oxidation reaction of an allylic ester into its corresponding α,β-unsaturated ketone. The second process consisted of a stereoselective α'-acyloxylation of the key intermediate α,β-unsaturated ketone to afford its corresponding acetoxyketone, which was converted into 2-acetoxytrilobolide (4) in a few steps. This innovative approach would allow the synthesis of a broad library of novel and valuable penta- and hexaoxygenated guaianolides as potential anticancer agents.