As atherosclerosis remains one of the most prevalent causes of patient mortality, the ability to diagnose early signs of plaque rupture and thrombosis represents a significant clinical need. With recent advances in nanotechnology, it is now possible to image specific molecular processes noninvasively with MRI, using various types of nanoparticles as contrast agents. In the context of cardiovascular disease, it is possible to specifically deliver contrast agents to an epitope of interest for detecting vascular inflammatory processes, which serve as predecessors to atherosclerotic plaque development. Herein, we review various applications of nanotechnology in detecting atherosclerosis using MRI, with an emphasis on perfluorocarbon nanoparticles and fluorine imaging, along with theranostic prospects of nanotechnology in cardiovascular disease.
Keywords: atherosclerosis; contrast agent; inflammation; theranostics; thrombosis.