Objective: Mutations in the gene encoding the prion protein (PrP) are responsible for approximately 10 to 15% of cases of prion disease in humans, including Creutzfeldt-Jakob disease (CJD). Here, we report on the discovery of a previously unreported C-terminal PrP mutation (A224V) in a CJD patient exhibiting a disease similar to the rare VV1 subtype of sporadic (s) CJD and investigate the role of this mutation in prion replication and transmission.
Methods: We generated transgenic (Tg) mice expressing human PrP with the V129 polymorphism and A224V mutation, denoted Tg(HuPrP,V129,A224V) mice, and inoculated them with different subtypes of sCJD prions.
Results: Transmission of sCJD VV2 or MV2 prions was accelerated in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice, with incubation periods of ∼110 and ∼210 days, respectively. In contrast, sCJD MM1 prions resulted in longer incubation periods in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice (∼320 vs. ∼210 days). Prion strain fidelity was maintained in Tg(HuPrP,V129,A224V) mice inoculated with sCJD VV2 or MM1 prions, despite the altered replication kinetics.
Interpretation: Our results suggest that A224V is a risk factor for prion disease and modulates the transmission behavior of CJD prions in a strain-specific manner, arguing that residues near the C-terminus of PrP are important for controlling the kinetics of prion replication.
© 2015 American Neurological Association.