It is of great scientific and practical significance to explore inorganic mimetic enzymes to replace natural enzymes due to their instability and high cost. Herein we present an interesting discovery that a V2O3-ordered mesoporous carbon composite (V2O3-OMC) has a novel peroxidase-like activity towards fast redox reaction of typical peroxidase substrates H2O2 and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS). Due to the small size effect and large surface area of V2O3 nanoparticles supported by OMC, V2O3-OMC exhibited excellent catalytic performance with a k(cat) of 1.28 × 10(4) s(-1), K(M) (ABTS) of 0.067 mM and K(M) (H2O2) of 0.16 mM, and a significantly higher catalytic efficiency (k(cat)/K(M)) towards the oxidation of ABTS in comparison with the natural peroxidases. Furthermore, the Ping-pong BiBi mechanism was proposed to explain the catalytic reaction by V2O3-OMC. Based on this highly active biomimetic peroxidase and the colorimetric detection of H2O2, a facile analytical method was developed to detect glucose by using V2O3-OMC and glucose oxidase, which had a wide linear range (0.01-4 mM glucose), good selectivity and reliability for successful detection of various real samples. Thus, the novel V2O3-OMC peroxidase mimetic holds great promise for broad potential applications.