Deforestation and cultivation mobilize mercury from topsoil

Sci Total Environ. 2015 Nov 1:532:467-73. doi: 10.1016/j.scitotenv.2015.06.025. Epub 2015 Jun 19.

Abstract

Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment.

Keywords: Erosion; Forest; Land use; Lead; Volatilization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Conservation of Natural Resources
  • Environmental Monitoring*
  • Forests*
  • Mercury / analysis*
  • Ohio
  • Soil
  • Soil Pollutants / analysis*

Substances

  • Soil
  • Soil Pollutants
  • Mercury