Genetic variants within immune-modulating genes influence the risk of developing rheumatoid arthritis and anti-TNF drug response: a two-stage case-control study

Pharmacogenet Genomics. 2015 Sep;25(9):432-43. doi: 10.1097/FPC.0000000000000155.

Abstract

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that arises as a result of the interaction between genetic and environmental factors. A growing body of research suggests that genetic variants within immune-related genes can influence the risk of developing the disease and affect drug response.

Materials and methods: To test this hypothesis, we carried out a comprehensive two-stage case-control study in a White population of 1239 White RA patients and 1229 healthy controls to investigate whether 49 single nucleotide polymorphisms within or near 17 immune-related genes modulate the risk of developing RA and antitumor necrosis factor (anti-TNF) drug response.

Results: Logistic regression analyses showed that carriers of the IL4rs2070874T and IL4rs2243250T and IL8RBrs1126580A alleles or the IL8RBrs2230054C/C genotype had a significantly increased risk of developing RA [odds ratio (OR)=1.37, 95% confidence interval (CI) 1.13-1.67, P=0.0016; OR=1.24, 95% CI 1.03-1.49, P=0.020; OR=1.23, 95% CI 1.08-1.41, P=0.002 and OR=1.19, 95% CI 1.04-1.36, P=0.01, respectively]. The association of the IL4 variants was further supported by a meta-analysis including 7150 individuals (P =0.0010), whereas the involvement of the IL8RB locus in determining the susceptibility to RA was also supported by gene-gene interaction analyses that identified significant two-locus and three-locus interaction models including IL8RB variants that act synergistically to increase the risk of the disease (P=0.014 and 0.018). Interestingly, we also found that patients harbouring the IFNGrs2069705C allele showed a significantly better response to anti-TNF drugs than those patients carrying the wild-type allele (P=0.0075).

Conclusions: Our data suggest that IL4 and IL8RB loci may have a small-effect genetic impact on the risk of developing RA, whereas IFNG might be involved in modulating the response to anti-TNF drugs.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Arthritis, Rheumatoid / drug therapy
  • Arthritis, Rheumatoid / genetics*
  • Case-Control Studies
  • Female
  • Genetic Predisposition to Disease
  • Humans
  • Immunosuppressive Agents / administration & dosage*
  • Immunosuppressive Agents / pharmacology
  • Interferon-gamma / antagonists & inhibitors
  • Interferon-gamma / genetics
  • Interleukin-4 / genetics*
  • Male
  • Middle Aged
  • Polymorphism, Single Nucleotide*
  • Receptors, Interleukin-8B / genetics*
  • Regression Analysis
  • White People / genetics

Substances

  • IFNG protein, human
  • IL4 protein, human
  • Immunosuppressive Agents
  • Receptors, Interleukin-8B
  • Interleukin-4
  • Interferon-gamma