Aptamers have emerged as promising biorecognition elements in the development of biosensors. The present work focuses on the application of quartz crystal microbalance with dissipation monitoring (QCM-D) for the enantioselective detection of a low molecular weight target molecule (less than 200 Da) by aptamer-based sensors. While QCM-D is a powerful technique for label-free, real-time characterization and quantification of molecular interactions at interfaces, the detection of small molecules interacting with immobilized receptors still remains a challenge. In the present study, we take advantage of the aptamer conformational changes upon the target binding that induces displacement of water acoustically coupled to the sensing layer. As a consequence, this phenomenon leads to a significant enhancement of the detection signal. The methodology is exemplified with the enantioselective recognition of a low molecular weight model compound, L-tyrosinamide (L-Tym). QCM-D monitoring of L-Tym interaction with the aptamer monolayer leads to an appreciable signal that can be further exploited for analytical purposes or thermodynamics studies. Furthermore, in situ combination of QCM-D with spectroscopic ellipsometry unambiguously demonstrates that the conformational change induces a nanometric decrease of the aptamer monolayer thickness. Since QCM-D is sensitive to the whole mass of the sensing layer including water that is acoustically coupled, a decrease in thickness of the highly hydrated aptamer layer induces a sizable release of water that can be easily detected by QCM-D.