Induced Pluripotent Stem Cell-Derived Conditioned Medium Attenuates Acute Kidney Injury by Downregulating the Oxidative Stress-Related Pathway in Ischemia-Reperfusion Rats

Cell Transplant. 2016;25(3):517-30. doi: 10.3727/096368915X688542. Epub 2015 Jun 30.

Abstract

Teratoma-like formation addresses a critical safety concern for the potential utility of induced pluripotent stem cells (iPSCs). Therefore, therapy utilizing iPSC-derived conditioned medium (iPSC-CM) for acute kidney injury (AKI) has attracted substantial interest. A recent study showed that iPSC-CM effectively alleviated ventilator-induced lung injury in rats. It prompts us to assess the therapeutic effects of iPSC-CM on ischemic AKI. First, we assessed the changes in renal function and tubular cell apoptosis by intraperitoneal administration of iPSC-CM to ischemia-reperfusion (I/R) rats. Second, we explored the oxidative stress-related pathway in the apoptosis of renal tubular cells subjected to hypoxia-reoxygenation (H/R). Administration of iPSC-CM significantly improved renal function and protected tubular cells against apoptosis in rats with I/R-AKI, and the optimal effect was observed at the 50-fold concentrated iPSC-CM. iPSC-CM also mitigated the H/R-induced apoptosis of NRK-52E cells in vitro. Reactive oxygen species (ROS) production was augmented in kidneys following I/R and in NRK-52E cells subjected to H/R. Meanwhile, expressions of phosphorylated p38 MAPK, TNF-α, and cleaved caspase 3 and NF-κB activity were consistently increased in vivo and in vitro. Following administration of iPSC-CM, ROS production was abolished, and inflammatory cytokine expression was significantly suppressed. Annexin V-propidium iodide flow cytometry and in situ TUNEL assay further showed that iPSC-CM markedly attenuated H/R- or I/R-induced tubular cell apoptosis. Intriguingly, treatment with iPSC-CM significantly improved the survival of rats with I/R-induced AKI. iPSC-CM represents a favorable source of stem cell-based therapy and may serve as a potential therapeutic strategy for kidney repair in ischemic AKI.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury / drug therapy*
  • Acute Kidney Injury / metabolism
  • Acute Kidney Injury / pathology
  • Animals
  • Apoptosis / drug effects
  • Cells, Cultured
  • Culture Media, Conditioned / pharmacology*
  • Female
  • Induced Pluripotent Stem Cells / cytology
  • Induced Pluripotent Stem Cells / metabolism*
  • Kidney / cytology
  • Kidney / drug effects*
  • Kidney / metabolism
  • Kidney / pathology
  • Male
  • Mice, Inbred C57BL
  • Oxidative Stress / drug effects*
  • Rats
  • Rats, Sprague-Dawley
  • Reactive Oxygen Species / metabolism
  • Reperfusion Injury / drug therapy*
  • Reperfusion Injury / metabolism
  • Reperfusion Injury / pathology

Substances

  • Culture Media, Conditioned
  • Reactive Oxygen Species