Hydrogen has been demonstrated to function as a novel antioxidant and exert therapeutic antioxidant activity in a number of diseases. The present study was designed to investigate the effect of hydrogen inhalation on liver ischemia/reperfusion (I/R) injury in rats. The portal triad to the left lobe and the left middle lobe of the liver were completely occluded for 90 min. This was followed by reperfusion for 180 min. The rats subsequently underwent syngeneic orthotopic liver transplantation. Inhalation of various concentrations (1, 2 and 3%) of hydrogen gas and its administration for different durations (1, 3 and 6 h) immediately prior to the I/R injury allowed the optimal dose and duration of administration to be determined. Liver injury was evaluated through biochemical and histopathological examinations. The expression levels of proinflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6, were measured by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction (qPCR). Liver nuclear factor κB (NF-κB) was detected by qPCR and western blot analysis. Inhalation of hydrogen gas at 2% concentration for 1 h significantly reduced the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, the expression of cytokines, including IL-6, TNF-α, early growth response protein 1 (Egr-1) and IL-1β, and morphological damage. In addition, the mRNA and protein expression levels of NF-κB, heme oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2) and zinc finger protein A20 (A20) in rats where only the donors received hydrogen were significantly increased compared with those in rats where both the donor and recipient, or only the recipient received hydrogen. The results indicate that hydrogen inhalation at 2% concentration for 1 h prior to liver transplantation protected the rats from ischemia/reperfusion injury by activation of the NF-κB signaling pathway.
Keywords: hydrogen; liver ischemia/reperfusion; liver transplantation.