Objective: Achieving biomimetic mineralization of collagen fibrils by mimicking the role of non-collagenous proteins (NCPs) with biomimetic analogs is of great interest in the fields of material science and stomatology. Amine-terminated PAMAM dendrimer (PAMAM-NH2), which possesses a highly ordered architecture and many calcium coordination sites, may be a desirable template for simulating NCPs to induce mineralization of collagen fibrils. In this study, we focused on the ability of PAMAM-NH2 to mineralize collagen fibrils.
Design: Type-I collagen fibrils were reconstituted over 400-mesh formvar-and-carbon-coated gold grids and treated with a third-generation PAMAM-NH2 (G3-PAMAM-NH2) solution. The treated collagen fibrils were immersed in artificial saliva for different lengths of time. The morphologies of the mineralized reconstituted type-I collagen fibrils were characterized by transmission electron microscopy.
Results: No obvious mineralized collagen fibrils were detected in the control group. On the contrary, collagen fibrils were heavily mineralized in the experimental group. Most importantly, intrafibrillar mineralization was achieved within the reconstituted type-I collagen fibrils.
Conclusions: In this study, we successfully induced biomimetic mineralization within type-I collagen fibrils using G3-PAMAM-NH2. This strategy may serve as a potential therapeutic technique for restoring completely demineralized collagenous mineralized tissues.
Keywords: amine-terminated PAMAM dendrimer; biomaterial; biomimetic mineralization; collagen fibrils; intrafibrillar mineralization.