Stimuli-responsive supramolecular assemblies consisting of small molecules are attractive functional materials for biological applications such as drug delivery, medical diagnosis, enzyme immobilization, and tissue engineering. By use of their dynamic and reversible properties, many supramolecular assemblies responsive to a variety of biomolecules have been designed and synthesized. This review focuses on promising strategies for the construction of such dynamic supramolecular assemblies and their functions. While studies of biomolecule-responsive supramolecular assemblies have mainly been performed in vitro, it has recently been demonstrated that some of them can work in live cells. Supramolecular assemblies now open up new avenues in chemical biology and biofunctional materials.
Keywords: biological applications; biomolecules; hydrogels; stimuli responsiveness; supramolecular assembly.
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.