We report on a flexible multipurpose nonlinear microscopic imaging system based on a femtosecond excitation source and a photonic crystal fiber with multiple miniaturized time-correlated single-photon counting detectors. The system provides the simultaneous acquisition of e.g., two-photon autofluorescence, second-harmonic generation, and coherent anti-Stokes Raman scattering images. Its flexible scan head permits ex vivo biological imaging with subcellular resolution such as rapid biopsy examination during surgery as well as imaging on small as well as large animals. Above all, such an arrangement perfectly matches the needs for the clinical investigation of human skin in vivo where knowledge about the distribution of endogenous fluorophores, second-harmonic generation-active collagen as well as nonfluorescent lipids is of high interest.
Keywords: CARS; fluorescent lifetime imaging; multimodal; multiphoton tomography; second-harmonic generation; skin imaging.