Antagonists of retinol-binding protein 4 (RBP4) impede ocular uptake of serum all-trans retinol (1) and have been shown to reduce cytotoxic bisretinoid formation in the retinal pigment epithelium (RPE), which is associated with the pathogenesis of both dry age-related macular degeneration (AMD) and Stargardt disease. Thus, these agents show promise as a potential pharmacotherapy by which to stem further neurodegeneration and concomitant vision loss associated with geographic atrophy of the macula. We previously disclosed the discovery of a novel series of nonretinoid RBP4 antagonists, represented by bicyclic [3.3.0]-octahydrocyclopenta[c]pyrrolo analogue 4. We describe herein the utilization of a pyrimidine-4-carboxylic acid fragment as a suitable isostere for the anthranilic acid appendage of 4, which led to the discovery of standout antagonist 33. Analogue 33 possesses exquisite in vitro RBP4 binding affinity and favorable drug-like characteristics and was found to reduce circulating plasma RBP4 levels in vivo in a robust manner (>90%).