Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

Appl Environ Microbiol. 2015 Oct;81(19):6736-48. doi: 10.1128/AEM.01852-15. Epub 2015 Jul 17.

Abstract

This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • Bacteria / metabolism
  • Biodiversity
  • Endophytes / classification
  • Endophytes / genetics
  • Endophytes / isolation & purification*
  • Endophytes / metabolism
  • Fermentation
  • Flour / microbiology
  • Lactic Acid / metabolism*
  • Microbiota
  • Sequence Analysis, DNA
  • Triticum / microbiology*

Substances

  • Lactic Acid

Associated data

  • SRA/PRJNA268304