Aims: The aim of this study was to evaluate, via various molecular methods, the possible correlations between microbial community structure of Prussian carp and the environmental compartments of their habitat.
Methods and results: Microbial communities in the intestine and environmental compartments were studied using PCR-screening, cloning and next-generation high-throughput sequencing of the 16S ribosomal RNA genes. The 16S rDNA metagenomic sequencing showed higher bacterial diversity in comparison with clone libraries, while group-specific PCR showed positive detection of nine bacteria phyla. Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria and Actinobacteria were most abundant both in the intestine and habitat environments. The comparative analyses reveal that the bacterial community in the Prussian carp intestine is most similar to that identified from the chironomid.
Conclusions: This study demonstrated some differences between molecular methods and showed advantages and limitations associated with them. These differences have the potential to reduce bias in results obtained from analysis of the community structure. The advantages of each molecular technique can be used for a better understanding of microbial diversity. The microbiota of Prussian carp intestine is most similar to those from the chironomids.
Significance and impact of the study: We investigated the diversity of the intestinal microbiota in an economically important aquaculture species, the Prussian carp (Carassius gibelio). The results provide significant information to discuss possible functions of these bacteria for further understanding of Prussian carp health.
Keywords: 16S rDNA clone libraries; fish microbiota; genetic diversity; group-specific PCR; metagenomic sequencing.
© 2015 The Society for Applied Microbiology.