Noble-metal nanomaterials were widely investigated as theranostic systems for surface enhanced Raman scattering (SERS) imaging, and also for photothermal therapy (PTT) of cancers. However, it was still a major challenge to explore multifunctional nanoprobes with high performance, high stability, and low toxicity. In this work, Raman reporter (DTTC)-coupled Agcore@Aushell nanostars (Ag@Au-DTTC) were synthesized and investigated for in vivo improved SERS imaging and near-infrared (NIR)-triggered PTT of breast cancers. By the two-step coupling of DTTC, the SERS signal was improved obviously, and the cytotoxicity of nanoparticles was also decreased by coating Au nanostars onto Ag nanoparticles. The as-prepared Ag@Au-DTTC nanostars showed high photostability and excellent photothermal performance, in which the photothermal conversion efficiency was up to 79.01% under the irradiation of an 808 nm laser. The in vitro and in vivo SERS measurements of Ag@Au-DTTC nanostars showed that the many sharp and narrow Raman peaks located at 508, 782, 844, 1135, 1242, 1331, 1464, 1510, and 1580 cm(-1) could be obviously observed in MCF-7 cells and in MCF-7 tumor-bearing nude mice, compared with that in pure DTTC. In 14-day treatments, the tumor volume of MCF-7 tumor-bearing nude mice injected with Ag@Au-DTTC nanostars and irradiated by an 808 nm laser almost disappeared. This study demonstrated that the as-prepared Ag@Au-DTTC nanostars could be excellent multifunctional agents for improved SERS imaging and NIR-triggered PTT of breast cancers with low risk.
Keywords: 808 nm laser; Agcore@Aushell nanostars; Raman reporter; improved SERS imaging; photothermal therapy.