Raman Reporter-Coupled Ag(core)@Au(shell) Nanostars for in Vivo Improved Surface Enhanced Raman Scattering Imaging and Near-infrared-Triggered Photothermal Therapy in Breast Cancers

ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16781-91. doi: 10.1021/acsami.5b04548. Epub 2015 Jul 23.

Abstract

Noble-metal nanomaterials were widely investigated as theranostic systems for surface enhanced Raman scattering (SERS) imaging, and also for photothermal therapy (PTT) of cancers. However, it was still a major challenge to explore multifunctional nanoprobes with high performance, high stability, and low toxicity. In this work, Raman reporter (DTTC)-coupled Agcore@Aushell nanostars (Ag@Au-DTTC) were synthesized and investigated for in vivo improved SERS imaging and near-infrared (NIR)-triggered PTT of breast cancers. By the two-step coupling of DTTC, the SERS signal was improved obviously, and the cytotoxicity of nanoparticles was also decreased by coating Au nanostars onto Ag nanoparticles. The as-prepared Ag@Au-DTTC nanostars showed high photostability and excellent photothermal performance, in which the photothermal conversion efficiency was up to 79.01% under the irradiation of an 808 nm laser. The in vitro and in vivo SERS measurements of Ag@Au-DTTC nanostars showed that the many sharp and narrow Raman peaks located at 508, 782, 844, 1135, 1242, 1331, 1464, 1510, and 1580 cm(-1) could be obviously observed in MCF-7 cells and in MCF-7 tumor-bearing nude mice, compared with that in pure DTTC. In 14-day treatments, the tumor volume of MCF-7 tumor-bearing nude mice injected with Ag@Au-DTTC nanostars and irradiated by an 808 nm laser almost disappeared. This study demonstrated that the as-prepared Ag@Au-DTTC nanostars could be excellent multifunctional agents for improved SERS imaging and NIR-triggered PTT of breast cancers with low risk.

Keywords: 808 nm laser; Agcore@Aushell nanostars; Raman reporter; improved SERS imaging; photothermal therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / pathology*
  • Female
  • Gold / administration & dosage*
  • Gold / chemistry
  • Humans
  • Infrared Rays
  • MCF-7 Cells
  • Mice
  • Mice, Nude
  • Nanocapsules / administration & dosage
  • Nanocapsules / chemistry*
  • Nanocapsules / ultrastructure
  • Photochemotherapy / methods*
  • Photosensitizing Agents / administration & dosage
  • Photosensitizing Agents / chemistry
  • Spectrum Analysis, Raman / methods*
  • Surface Plasmon Resonance / methods
  • Theranostic Nanomedicine / methods
  • Treatment Outcome

Substances

  • Nanocapsules
  • Photosensitizing Agents
  • Gold