Background: Selection of NSCLC patients for targeted therapy is currently based upon the presence of sensitizing mutations in EGFR and EML4/ALK translocations. The heterogeneity of molecular alterations in lung cancer has led to the ongoing discovery of potential biomarkers and targets in order to improve survival.
Aim: This study aimed to detect alterations in EGFR, KRAS, BRAF, PIK3CA, MET-gene copy number and ALK rearrangements in a large cohort of 956 NSCLC patients of Hellenic origin using highly sensitive techniques and correlations with clinicopathological characteristics.
Results: Mutations were detected in EGFR 10.6% (101 out of 956 samples), KRAS 26.5% (191 out of 720 samples), BRAF 2.5% (12 out of 471 samples), PIK3CA 3.8% (7 out of 184 samples), MET gene amplification was detected in 18% (31 out of 170) and ALK rearrangements in 3.7% (4 out of 107 samples). EGFR mutations were detected in exon 19 (61.4% of mutant cases), exon 21 p.Leu858Arg (19.8%), exon 20 (15.8%), exon 18 (2.9%) and were correlated with gender histology, smoking status and TTF1 staining. p.Thr790Met mutant cases (3.9%) displayed concurrent mutations in exons 19 or 21. Negative TTF-1 staining showed strong negative predictive value for the presence of EGFR mutations. KRAS mutations were associated with histology, the most common mutation being p.Gly12Cys (38%).
Discussion: In conclusion, only 89 patients were eligible for EGFR -TKIs and ALK inhibitors therapy, whereas 257 patients showed other alterations, highlighting the necessity for a detailed molecular profiling potentially leading to more efficient individualized therapies for NSCLC patients.