The exclusive reservoir of the genus Neisseria is the human. Of the broad range of species that comprise the Neisseria, only two are frequently pathogenic, and only one of those is a resident of the nasopharynx. Although Neisseria meningitidis can cause severe disease if it invades the bloodstream, the vast majority of interactions between humans and Neisseria are benign, with the bacteria inhabiting its mucosal niche as a non-invasive commensal. Understandably, with the exception of Neisseria gonorrhoeae, which preferentially colonises the urogenital tract, the neisseriae are extremely well adapted to survival in the human nasopharynx, their sole biological niche. The purpose of this review is to provide an overview of the molecular mechanisms evolved by Neisseria to facilitate colonisation and survival within the nasopharynx, focussing on N. meningitidis. The organism has adapted to survive in aerosolised transmission and to attach to mucosal surfaces. It then has to replicate in a nutrition-poor environment and resist immune and competitive pressure within a polymicrobial complex. Temperature and relative gas concentrations (nitric oxide and oxygen) are likely to be potent initial signals of arrival within the nasopharyngeal environment, and this review will focus on how N. meningitidis responds to these to increase the likelihood of its survival.
Keywords: Adaptation; Carriage; Colonisation; Commensal; Meningitis; Meningococcal; Nasopharynx; Neisseria.
© 2015 Elsevier Ltd. All rights reserved.