A Bacillus subtilis mutant strain overexpressing surfactin biosynthetic genes was previously constructed. In order to further increase the production of this biosurfactant, our hypothesis is that the surfactin precursors, especially leucine, must be overproduced. We present a three step approach for leucine overproduction directed by methods from computational biology. Firstly, we develop a new algorithm for gene knockout prediction based on abstract interpretation, which applies to a recent modeling language for reaction networks with partial kinetic information. Secondly, we model the leucine metabolic pathway as a reaction network in this language, and apply the knockout prediction algorithm with the target of leucine overproduction. Out of the 21 reactions corresponding to potential gene knockouts, the prediction algorithm selects 12 reactions. Six knockouts were introduced in B. subtilis 168 derivatives strains to verify their effects on surfactin production. For all generated mutants, the specific surfactin production is increased from 1.6- to 20.9-fold during the exponential growth phase, depending on the medium composition. These results show the effectiveness of the knockout prediction approach based on formal models for metabolic reaction networks with partial kinetic information, and confirms our hypothesis that precursors supply is one of the main parameters to optimize surfactin overproduction.
Keywords: Abstract interpretation; Bacillus subtilis; Knockout prediction; Modeling language; Surfactin.
© 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.