Background: Mutational analysis is reshaping the practice of fine-needle aspiration cytology for the diagnosis of thyroid nodules. The v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) valine (V) to glutamic acid (E) substitution at codon 600 (BRAF(V600E)) is the most effective diagnostic/prognostic marker and is used mainly for papillary thyroid carcinomas (PTCs). Although BRAF(V600E) represents 95% of all BRAF mutations, uncommon BRAF mutations have been identified in thyroid carcinomas. For the current study, the authors evaluated morphologic (plump pink cells and sickle-shaped nuclei) anti-BRAF(V600E) antibody (VE1) immunocytochemical and molecular findings of BRAF mutations in PTCs and in the follicular variant of PTC (FVPC).
Methods: Between January 2013 and June 2014, there were 150 cytologic samples with surgical follow-up at the authors' institution. BRAF mutations, which were identified using liquid-based cytology, were classified into wild-type BRAF, BRAF(V600E), and uncommon BRAF mutations. All clinicopathologic correlations between BRAF and FVPCs were analyzed.
Results: Forty-four of 150 samples were identified as benign histologic lesions, and the authors focused on the 106 cytologic samples from patients who had malignant outcomes (60 PTCs and 46 FVPCs). The series included 16 follicular neoplasms, 36 samples diagnosed as suspicious of malignancy, and 54 samples diagnosed as positive for malignancy. The BRAF(V600E) mutation was detected in 17.4% of FVPCs and in 66.6% of PTCs, whereas uncommon BRAF mutations were detected only in FVPCs. Plump pink cells and VE1 expression were not identified in samples that had uncommon BRAF mutations. VE1 immunocytochemistry yielded positive results in all 36 samples that had the BRAF(V600E) mutation.
Conclusions: Uncommon BRAF mutations were observed only in FVPCs and were linked to less aggressive behavior. Negative/weak VE1 expression was observed in both wild-type and uncommon BRAF mutations. The current investigation did not reveal any plump cells or morphologic BRAF findings in samples that had uncommon BRAF mutations. In the authors' experience, BRAF mutations detected by DNA methods were more accurate in identifying FVPCs.
Keywords: BRAF mutations; follicular neoplasms; follicular variant of papillary thyroid carcinoma; liquid-based cytology; papillary thyroid carcinoma.
© 2015 American Cancer Society.