OBJECT The number of patients with spinal tumors is rapidly increasing; spinal metastases develop in more than 30% of cancer patients during the course of their illness. Such lesions can significantly decrease quality of life, often necessitating treatment. Stereotactic radiosurgery has effectively achieved local control and symptomatic relief for these patients. The authors determined prognostic factors that predicted pain palliation and report overall institutional outcomes after spine stereotactic body radiation therapy (SBRT). METHODS Records of patients who had undergone treatment with SBRT for either primary spinal tumors or spinal metastases from June 2008 through June 2013 were retrospectively reviewed. Data were collected at the initial visit just before treatment and at 1-, 3-, 6-, and 12-month follow-up visits. Collected clinical data included Karnofsky Performance Scale scores, pain status, presence of neurological deficits, and prior radiation exposure at the level of interest. Radiation treatment plan parameters (dose, fractionation, and target coverage) were recorded. To determine the initial extent of epidural spinal cord compression (ESCC), the authors retrospectively reviewed MR images, assessed spinal instability according to the Bilsky scale, and evaluated lesion progression after treatment. RESULTS The study included 99 patients (mean age 60.4 years). The median survival time was 9.1 months (95% CI 6.9-17.2 months). Significant decreases in the proportion of patients reporting pain were observed at 3 months (p < 0.0001), 6 months (p = 0.0002), and 12 months (p = 0.0019) after treatment. Significant decreases in the number of patients reporting pain were also observed at the last follow-up visit (p = 0.00020) (median follow-up time 6.1 months, range 1.0-56.6 months). Univariate analyses revealed that significant predictors of persistent pain after intervention were initial ESCC grade, stratified by a Bilsky grade of 1c (p = 0.0058); initial American Spinal Injury Association grade of D (p = 0.011); initial Karnofsky Performance Scale score, stratified by a score of 80 (p = 0.002); the presence of multiple treated lesions (p = 0.044); and prior radiation at the site of interest (p < 0.0001). However, when multivariate analyses were performed on all variables with p values less than 0.05, the only predictor of pain at last follow-up visit was a prior history of radiation at the site of interest (p = 0.0038), although initial ESCC grade trended toward significance (p = 0.073). Using pain outcomes at 3 months, at this follow-up time point, pain could be predicted by receipt of radiation above a threshold biologically effective dose of 66.7 Gy. CONCLUSIONS Pain palliation occurs as early as 3 months after treatment; significant differences in pain reporting are also observed at 6 and 12 months. Pain palliation is limited for patients with spinal tumors with epidural extension that deforms the cord and for patients who have previously received radiation to the same site. Further investigation into the optimal dose and fractionation schedule are needed, but improved outcomes were observed in patients who received radiation at a biologically effective dose (with an a/b of 3.0) of 66.7 Gy or higher.
Keywords: ASIA = American Spinal Injury Association; BED = biologically effective dose; ECOG = Eastern Cooperative Oncology Group; ESCC = epidural spinal cord compression; KPS = Karnofsky Performance Scale; SBRT; SBRT = stereotactic body radiation therapy; oncology; pain palliation; radiotherapy; stereotactic.