At ASDEX Upgrade (AUG), a new compact solid-state detector has been installed to measure the energy spectrum of fast neutrals based on the principle described by Shinohara et al. [Rev. Sci. Instrum. 75, 3640 (2004)]. The diagnostic relies on the usual charge exchange of supra-thermal fast-ions with neutrals in the plasma. Therefore, the measured energy spectra directly correspond to those of confined fast-ions with a pitch angle defined by the line of sight of the detector. Experiments in AUG showed the good signal to noise characteristics of the detector. It is energy calibrated and can measure energies of 40-200 keV with count rates of up to 140 kcps. The detector has an active view on one of the heating beams. The heating beam increases the neutral density locally; thereby, information about the central fast-ion velocity distribution is obtained. The measured fluxes are modeled with a newly developed module for the 3D Monte Carlo code F90FIDASIM [Geiger et al., Plasma Phys. Controlled Fusion 53, 65010 (2011)]. The modeling allows to distinguish between the active (beam) and passive contributions to the signal. Thereby, the birth profile of the measured fast neutrals can be reconstructed. This model reproduces the measured energy spectra with good accuracy when the passive contribution is taken into account.