Modern strategies to identify new molecular targets for the treatment of liver diseases: The promising role of Proteomics and Redox Proteomics investigations

Proteomics Clin Appl. 2009 Feb;3(2):242-62. doi: 10.1002/prca.200800169.

Abstract

Oxidative stress, due to an imbalance between the generation of ROS and the antioxidant defense capacity of the cell, is a major pathogenetic event occurring in several liver diseases, ranging from metabolic to proliferative. Main sources of ROS are represented by mitochondria and cytochrome P450 enzymes in the hepatocytes, Küppfer cells, and neutrophils. Oxidative stress affects major cellular components including lipids, DNA, and proteins. Through modulation of protein structure/function, ROS can influence gene expression profile by affecting intracellular signal transduction pathways. While several enzymatic and nonenzymatic markers of chronic oxidative stress are well known in liver, early protein targets of oxidative injury are yet poorly defined. Identification of these biomarkers will enable early detection of liver diseases and will allow monitoring the degree of liver damage, the response to pharmacological therapies, and the development of new therapeutic approaches. In the era of molecular medicine, new proteomic methodologies promise to establish a relationship between pathological hallmarks of the disease and protein structural/functional modifications, thus allowing a better understanding and a more rational therapy on liver disorders. Purpose of this review is to critically analyze the application of proteomic and redox proteomic approaches to the study of oxidative stress-linked liver diseases.

Keywords: Inflammation; Liver disease; Oxidative stress; Redox proteomics.