Enterobacter cloacae is among the most important pathogens responsible for nosocomial infections and outbreaks. In this study, 77 Enterobacter isolates were collected: 27 isolates from Algerian hospitals (in Constantine, Annaba, and Skikda) and 50 isolates from Marseille, France. All strains were identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Antibiotic susceptibility testing was performed by the disk diffusion method. PCR was used to detect extended-spectrum-beta-lactamase (ESBL)-encoding, fluoroquinolone resistance-encoding, and aminoglycoside-modifying enzyme (AME) genes. Epidemiological typing was performed using MALDI-TOF MS with data mining approaches, along with multilocus sequence typing (MLST). Sixty-eight isolates (27 from Algeria, 41 from Marseille) were identified by MALDI-TOF MS as E. cloacae. Resistance to antibiotics in the Algerian isolates was significantly higher than that in the strains from Marseille, especially for beta-lactams and aminoglycosides. Eighteen of the 27 Algerian isolates and 11 of the 41 Marseille isolates possessed at least one ESBL-encoding gene: blaCTX-M and/or blaTEM. AME genes were detected in 20 of the 27 Algerian isolates and 8 of the 41 Marseille isolates [ant(2″)-Ia, aac(6')-Ib-cr, aadA1, aadA2, and armA]. Conjugation experiments showed that armA was carried on a transferable plasmid. MALDI-TOF typing showed three separate clusters according to the geographical distribution and species level. An MLST-based phylogenetic tree showed a clade of 14 E. cloacae isolates from a urology unit clustering together in the MALDI-TOF dendrogram, suggesting the occurrence of an outbreak in this unit. In conclusion, the ability of MALDI-TOF to biotype strains was confirmed, and surveillance measures should be implemented, especially for Algerian patients hospitalized in France.
Copyright © 2015, American Society for Microbiology. All Rights Reserved.