At their C-termini, cytosolic Hsp70s have an EEVD tetrapeptide that interacts with J-protein co-chaperones of the B, but not A, class. This interaction is required for partnering with yeast B-type J-proteins in protein folding. Here we report conservation of this feature. Human B-type J-proteins also have a stringent EEVD requirement. Human A-type J-proteins function less well than their yeast orthologs with Hsp70ΔEEVD. Changes in the zinc binding domain, a domain absent in B-type J-proteins, overcomes this partial EEVD dependence. Our results suggest that the structurally similar A- and B-class J-proteins of the cytosol have evolved conserved, yet distinct, features that enhance specialized functionality of Hsp70 machinery.
Keywords: EEVD motif; Hsp40; Hsp70; Molecular chaperone; Protein folding; Zinc binding domain.
Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.