Astrocyte reactivity after brain injury-: The role of galectins 1 and 3

Glia. 2015 Dec;63(12):2340-61. doi: 10.1002/glia.22898. Epub 2015 Aug 6.

Abstract

Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.

Keywords: genomewide analysis; glia proliferation; neurosphere.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes / metabolism*
  • Astrocytes / pathology
  • Cell Proliferation / physiology
  • Cells, Cultured
  • Disease Models, Animal
  • Galectin 1 / genetics
  • Galectin 1 / metabolism*
  • Galectin 3 / genetics
  • Galectin 3 / metabolism*
  • Gene Expression Profiling
  • Glial Fibrillary Acidic Protein / metabolism
  • Gray Matter / injuries
  • Gray Matter / metabolism
  • Gray Matter / pathology
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neural Stem Cells / metabolism
  • Neural Stem Cells / pathology
  • Somatosensory Cortex / injuries*
  • Somatosensory Cortex / metabolism*
  • Somatosensory Cortex / pathology
  • Stem Cell Niche / physiology

Substances

  • Galectin 1
  • Galectin 3
  • Glial Fibrillary Acidic Protein
  • Lgals3 protein, mouse
  • glial fibrillary astrocytic protein, mouse