The contribution of α-subunit of trifunctional protein (αTFP) to cardiolipin (CL) (diphosphatidylglycerol) remodelling and mitochondrial supercomplex formation was examined in heart and liver mitochondria from wild-type (WT) and αTFP heterozygous knockout [Mtpa(+/-)] mice. Mtpa(+/-) mouse heart and liver exhibited an approximate 55% and 50% reduction in αTFP protein expression compared with WT respectively. Monolysocardiolipin (MLCL) acyltransferase (MLCL AT)-1 protein derived from αTFP was reduced by 30% in Mtpa(+/-) mouse heart but not in liver compared with WT. In vitro acylation of MLCL was significantly reduced in heart but not in liver mitochondria of Mtpa(+/-) mice compared with WT. CL mass was reduced and significant reductions in linoleate-containing CL species, in particular tetralinoleoyl-CL (L4-CL) and trilinoleoyl-CL (L3-MLCL) species, were observed in heart and liver mitochondria of Mtpa(+/-) mice compared with WT. Cardiac and liver mitochondrial supercomplex assembly and NADH dehydrogenase (complex I) activity within these supercomplexes were unaltered in both Mtpa(+/-) mouse heart and Mtpa(+/-) mouse liver compared with WT. The results indicate that αTFP may modulate CL molecular species composition in murine heart and liver. In addition, L4-CL might not be an essential requirement for mitochondrial supercomplex assembly.
Keywords: acyltransferase; alpha subunit; cardiolipin; heart; liver; lysocardiolipin; monolysocardiolipin; trifunctional protein.
© 2015 Authors; published by Portland Press Limited.