The mitotic checkpoint (MC) guards faithful sister chromatid segregation by monitoring the attachment of spindle microtubules to the kinetochores. When chromosome attachment errors are detected, MC delays the metaphase-to-anaphase transition through the inhibition of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase. In contrast to yeast and mammals, our knowledge on the proteins involved in MC in plants is scarce. Transient synchronization of root tips as well as promoter-reporter gene fusions were performed to analyze temporal and spatial expression of COPPER MODIFIED RESISTANCE1/PATRONUS1 (CMR1/PANS1) in developing Arabidopsis thaliana seedlings. Functional analysis of the gene was carried out, including CYCB1;2 stability in CMR1/PANS1 knockout and overexpressor background as well as metaphase-anaphase chromosome status. CMR1/PANS1 is transcriptionally active during M phase. Its deficiency provokes premature cell cycle exit and in consequence a rapid consumption of the number of meristematic cells in particular under stress conditions that are known to affect spindle microtubules. Root growth impairment is correlated with a failure to delay the onset of anaphase, resulting in anaphase bridges and chromosome missegregation. CMR1/PANS1 overexpression stabilizes the mitotic CYCB1;2 protein. Likely, CMR1/PANS1 coordinates mitotic cell cycle progression by acting as an APC/C inhibitor and plays a key role in growth adaptation to stress.
Keywords: Arabidopsis thaliana; anaphase onset; anaphase-promoting complex/cyclosome (APC/C); cell cycle; mitotic checkpoint; root apical meristem; stress.
© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.