Karyotyping, or visually examining and recording chromosomal abnormalities, is commonly used to diagnose and treat disease. Karyotypes are written in the International System for Human Cytogenetic Nomenclature (ISCN), a computationally non-readable language that precludes full analysis of these genomic data. In response, we developed a cytogenetic platform that transfers the ISCN karyotypes to a machine-readable model available for computational analysis. Here we use cytogenetic data from the National Cancer Institute (NCI)-curated Mitelman database1 to create a structured karyotype language. Then, drug-gene-disease triplets are generated via a computational pipeline connecting public drug-gene interaction data sources to identify potential drug repurposing opportunities.