Epidermal Growth Factor Receptor Signaling to the Mitogen Activated Protein Kinase Pathway Bypasses Ras in Pancreatic Cancer Cells

Pancreas. 2016 Feb;45(2):286-92. doi: 10.1097/MPA.0000000000000379.

Abstract

Objective: Epidermal growth factor (EGF) receptor (EGFR/HER1) is overexpressed in human pancreatic cancers. However, anti-EGFR therapy does not exhibit significant therapeutic activity with oncogenic K-ras mutation. We sought to assess the signaling relationship between EGFR and mutant K-ras, which is commonly detected in pancreatic cancer.

Methods: Pancreatic cancer cells harboring mutated K-ras were treated with EGF to assess signaling from EGFR to mitogen-activated protein kinase (MAPK) pathway. The role of Ras family of proteins in transducing EGFR signals was assessed using short interfering RNA. Other components of MAPK and PI3K (phosphoinositide 3-kinase) pathways were examined for their roles in EGFR signaling.

Results: First, EGF signaling in pancreatic cancer cells occurs selectively through HER1. Second, knockdown of all Ras isoforms failed to block EGF-mediated phosphorylation of extracellular signal-regulated kinase (ERK). Inhibition of Raf was observed to partially abrogate ERK phosphorylation, whereas MEK inhibition resulted in complete attenuation of EGF-mediated ERK phosphorylation. Finally, inhibition of phosphoinositide 3-kinase/AKT and CDC42/PAK pathways did not block EGFR signaling.

Conclusions: Our study results demonstrate that EGFR-mediated signaling in mutant K-ras pancreatic cancer cells does not follow canonical MAPK signaling. Our novel findings suggest the existence of alternate signaling pathways to downstream MAPK in the presence of mutant K-ras.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Epidermal Growth Factor / pharmacology
  • ErbB Receptors / metabolism*
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Humans
  • Immunoblotting
  • MAP Kinase Signaling System*
  • Mutation
  • Pancreatic Neoplasms / genetics
  • Pancreatic Neoplasms / metabolism
  • Pancreatic Neoplasms / pathology
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / metabolism
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • RNA Interference
  • Signal Transduction*

Substances

  • KRAS protein, human
  • Epidermal Growth Factor
  • EGFR protein, human
  • ErbB Receptors
  • Proto-Oncogene Proteins c-akt
  • Extracellular Signal-Regulated MAP Kinases
  • Proto-Oncogene Proteins p21(ras)