The development of portable sensors that can be used outside the lab is an active area of research in the electroanalytical field. A major focus of such research is the development of low-cost electrodes for use in these sensors. Current electrodes, such as glassy-carbon electrodes (GCEs), are costly and require time-consuming preparation. Alternatives have been proposed, including mechanical pencil-lead electrodes (MPEs). However, MPEs themselves possess numerous drawbacks, particularly structural fragility. In this paper, we present a novel pencil-graphite electrode (PGE) fabricated from a regular HB#2 pencil. This PGE is a simple, disposable, extremely low-cost alternative to GCEs ($0.30 per PGE, vs. $190 + per GCE), and possesses the structural stability that MPEs lack. PGEs were characterized by square-wave voltammetry of ferricyanide, gallic acid, uric acid, dopamine, and several foodstuffs. In all cases, PGEs demonstrated sensitivities comparable or superior to those of the GCE and MPE (LOD = 5.62 × 10(-4) M PGE, 4.80 × 10(-4) M GCE, 2.93 × 10(-4) M MPE). Signal areas and peak heights were typically four to ten times larger for the PGE relative to the GCE.
Keywords: antioxidant; biosensor; glassy carbon electrode; pencil graphite electrode; square-wave voltammetry.