An Association Rule Mining Approach to Discover lncRNAs Expression Patterns in Cancer Datasets

Biomed Res Int. 2015:2015:146250. doi: 10.1155/2015/146250. Epub 2015 Jul 27.

Abstract

In the past few years, the role of long noncoding RNAs (lncRNAs) in tumor development and progression has been disclosed although their mechanisms of action remain to be elucidated. An important contribution to the comprehension of lncRNAs biology in cancer could be obtained through the integrated analysis of multiple expression datasets. However, the growing availability of public datasets requires new data mining techniques to integrate and describe relationship among data. In this perspective, we explored the powerness of the Association Rule Mining (ARM) approach in gene expression data analysis. By the ARM method, we performed a meta-analysis of cancer-related microarray data which allowed us to identify and characterize a set of ten lncRNAs simultaneously altered in different brain tumor datasets. The expression profiles of the ten lncRNAs appeared to be sufficient to distinguish between cancer and normal tissues. A further characterization of this lncRNAs signature through a comodulation expression analysis suggested that biological processes specific of the nervous system could be compromised.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Base Sequence
  • Brain Neoplasms / genetics*
  • Data Mining / methods*
  • Databases, Genetic
  • Gene Expression Profiling / methods*
  • Genetic Association Studies / methods*
  • Genetic Markers / genetics
  • History, Medieval
  • Humans
  • Molecular Sequence Data
  • RNA, Long Noncoding / genetics*
  • RNA, Neoplasm / genetics*

Substances

  • Genetic Markers
  • RNA, Long Noncoding
  • RNA, Neoplasm