We study the Li clustering process on graphene and obtain the geometry, nucleation barrier, and electronic structure of the clusters using first-principles calculations. We estimate the concentration-dependent nucleation barrier for Li on graphene. While the nucleation occurs more readily with increasing Li concentration, possibly leading to the dendrite formation and failure of the Li-ion battery, the existence of the barrier delays nucleation and may allow Li storage on graphene. Our electronic structure and charge transfer analyses reveal how the fully ionized Li adatoms transform to metallic Li during the cluster growth on graphene.
Keywords: Li-ion battery; cluster; first-principles; graphene; nucleation.