Real-time feedback about dissected tissue during the neurosurgical procedure is strongly requested. A novel direct ionization mass spectrometric method for identifying pathological differences in tissues is proposed. The method is based on simultaneous extraction of tissue lipids and electrospray ionization which allows mass spectrometric data to be obtained directly from soft tissues. The advantage of this method is the stable flow of solvent, which leads to stable time-dependent spectra. The tissues included necrotized tissues and tumor tissues in different combinations. Capability for direct analysis of samples of dissected tissues during the neurosurgical procedure is demonstrated. Data validation is conducted by compound identification using precise masses from the MS profile, MS/MS, and isotopic distribution structure analysis. The method can be upgraded and applied for real-time identification of tissues during surgery. This paper describes the technique and its application perspective. For these purposes, other methods were compared with the investigated one and the results were shown to be reproducible. Differences in lipid profiles were observed even in tissues from one patient where distinctions between different samples could be poor. The paper presents a proof of concept for the method to be applied in neurosurgery particularly and in tissue analysis generically. The paper also contains preliminary results proving the possibility of observing differences in mass spectra of different tumors.
Keywords: Ambient mass spectrometry; Brain; Diagnostics; Electrospray; FT ICR; Tumor.