Purpose: Aim of this study was to test the hypothesis that peak injection pressures and image quality using low concentrated contrast media (CM) (240 mg/mL) injected with high flow rates will be comparable to a standard injection protocol (CM: 300 mg/mL) in coronary computed tomographic angiography (CCTA).
Material and methods: One hundred consecutive patients were scanned on a 2nd generation dual-source CT scanner. Group 1 (n=50) received prewarmed Iopromide 240 mg/mL at an injection rate of 9 mL/s, followed by a saline chaser. Group 2 (n=50) received the standard injection protocol: prewarmed Iopromide 300 mg/mL; flow rate: 7.2 mL/s. For both protocols, the iodine delivery rate (IDR, 2.16 gI/s) and the total iodine load (22.5 gI) were kept identical. Injection pressure (psi) was continuously monitored by a data acquisition program. Contrast enhancement was measured in the thoracic aorta and all proximal and distal coronary segments. Subjective and objective image quality was evaluated between both groups.
Results: No significant differences in peak injection pressures were found between both CM groups (121 ± 5.6 psi vs. 120 ± 5.3 psi, p=0.54). Flow rates of 9 mL/s were safely injected without any complications. No significant differences in contrast-to-noise ratio, signal-to-noise ratio and subjective image quality were found (all p>0.05). No significant differences in attenuation levels were found in the thoracic aorta and all segments of the coronary arteries (all p>0.05).
Conclusion: Usage of low iodine concentration CM and injection with high flow rates is feasible. High flow rates (9 mL/s) of Iopromide 240 were safely injected without complications and should not be considered a drawback in clinical practice. No significant differences in peak pressure and image quality were found. This creates a doorway towards applicability of a broad variety in flow rates and IDRs and subsequently more individually tailored injection protocols.
Keywords: Cardiac imaging technique; Computed tomography; Contrast media; Diagnostic imaging; Flow injection analysis.
Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.